June 22, 2010

XUV absorption in aluminum: Calculating optical properties with electronic structure codes

Mike Desjarlais
High Energy Density Science
Sandia National Laboratories

This work is supported by Sandia, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000

Acknowledgments

Sam Vinko, Justin Wark, and Gianluca Gregori, Department of Physics, Clarendon Laboratory, University of Oxford

Ann Mattsson, Sandia

The XUV absorption of aluminum is of fundamental and practical interest

- A wide range of free-free dominated absorption
- Excellent test of electronic structure methods
- Practical applications for XUV lithography
- Routine use of Al filters between XUV lasers and spectrometers
- Several frequently cited data sets with unresolved discrepancies
- Well matched to new FEL XUV sources (FLASH at DESY)

Accurate optical properties in general are key to many approaches to temperature measurement

Several data sets have been generated for absorption in aluminum at ambient conditions

- Gullikson E.M. Gullikson, P. Denham, S. Mrowka, J. Underwood, Phys. Rev. B 49, 16283 (1994).
- Birken Birken, Jark, Kunz and Wolf, *Nucl. Instrum. Methods Phys. Res. A 253 166 (*1986).
- Henke B.L. Henke, E.M. Gullikson, J.C. Davis, Atom. Data Nucl. Data Tables 54, 181 (1993).
- **Keenan** R. Keenan, C. Lewis, J. Wark, E. Wolfrum, J. Phys. B 35 L447 (2002).

Differences between the data sets are significant

Experiments must either carefully account for oxidation, or eliminate it

The data ranges from the plasmon energy to the L edge and beyond

Although a free electron metal, the Drude model grossly underestimates the absorption in aluminum

Simple atomic cross section calculations do much better at higher energies

We calculate the absorption in fcc aluminum with electronic structure methods

- Density functional theory (DFT)
 - DFT calculations with VASP (Vienna ab initio simulation program)
 - Projector Augmented Wave (PAW) potentials
 - Kubo-Greenwood for transport properties (no local field corrections)
 - Full inverse dielectric calculations (local fields/Umklapp processes included)
 - Adler (1962), Wiser (1963)
- GW methods (G: Green's function, W: Dynamically screened Coulomb operator; much better excited states; accurate band gaps in semiconductors)
 - Also with VASP, at the level of G_0W_0 (single pass, using DFT wavefunctions) and GW_0 (iterative convergence on G, no update on W)
 - With and without local field corrections

Our initial attempts to calculate the XUV absorption with DFT were disappointing

A new potential was developed with careful attention to the high energy scattering properties

We first compute the dielectric and absorption properties without local field corrections

The usual approach (Kubo-Greenwood) to calculating the dielectric:

Assume
$$\phi^{ext} = \phi^{ext}(\mathbf{q}, \omega) \exp[i(\mathbf{q} \cdot \mathbf{r} - \omega t)]$$

Calculate the response
$$\phi^{tot} = \phi^{ext} + \phi^{ind}$$

assuming
$$\phi^{ind} = \phi^{ind}(\mathbf{q},\omega)\exp[i(\mathbf{q}\cdot\mathbf{r}-\omega t)]$$

For optical properties ($\mathbf{q} = 0$)

$$\sigma_{\mathbf{k}}(\omega) = \frac{2\pi e^2 \hbar^2}{3m^2 \omega \Omega} \sum_{\alpha=1}^{3} \sum_{i=1}^{N} \sum_{j=1}^{N} (F(\varepsilon_{i,\mathbf{k}}) - F(\varepsilon_{j,\mathbf{k}})) \left| \left\langle \Psi_{j,\mathbf{k}} \left| \nabla_{\alpha} \left| \Psi_{i,\mathbf{k}} \right\rangle \right|^2 \delta(\varepsilon_{j,\mathbf{k}} - \varepsilon_{i,\mathbf{k}} - \hbar \omega),\right.$$

with other optical properties derived through Kramers-Krönig relations

This approach has been very successful for dc and lower energy (visible light) optical properties in simple metals

Aluminum at 5.4 g/cc and 30000K

These are key quantities in pyrometry analysis and readily calculated with QMD/DFT

Density functional calculations of the XUV absorption lie below the data and give an L edge ~ 10 eV too low

Deriving the dielectric with local field effects included is considerably more involved

Recall that in periodic lattices (Bloch Theory), momentum conservation requires

$$k \rightarrow k + q$$
 OR $k \rightarrow k + q \pm nK$

where **k** refers to the crystal momentum of an electron at point **k** in the first Brillouin zone and **K** is a reciprocal lattice vector (e.g. $2\pi/L$).

In general then, an external field with wavevector **q** will induce

$$\phi^{ind} = \sum_{\mathbf{K}} \phi^{ind} (\mathbf{q}, \mathbf{K}, \omega) \exp[i(\mathbf{q} + \mathbf{K}) \cdot \mathbf{r} - i\omega t]$$

$$\Rightarrow \varepsilon^{-1} (\mathbf{q} + \mathbf{K}, \mathbf{q} + \mathbf{K}', \omega)$$

Local field contributions, Umklapp processes

A much more complicated object (Adler, Wiser)

The dielectric with local field corrections is the solution to an integral equation for 1/ε

$$\varepsilon^{-1}(\mathbf{q} + \mathbf{K}, \mathbf{q} + \mathbf{K}', \omega) = \delta_{\mathbf{K}, \mathbf{K}'} + \sum_{\mathbf{K}''} \frac{G(\mathbf{q} + \mathbf{K}, \mathbf{q} + \mathbf{K}'', \omega)}{|\mathbf{q} + \mathbf{K}''|^2} \varepsilon^{-1}(\mathbf{q} + \mathbf{K}'', \mathbf{q} + \mathbf{K}', \omega)$$

Where

$$G(\mathbf{q} + \mathbf{K}, \mathbf{q} + \mathbf{K}'', \omega) = \frac{4\pi e^{2}}{V} \sum_{ll'\mathbf{k}} \frac{\langle l\mathbf{k} | \exp(-i\mathbf{K} \cdot \mathbf{r}) | l'\mathbf{k} + \mathbf{q} \rangle \langle l'\mathbf{k} + \mathbf{q} | \exp(i\mathbf{K}'' \cdot \mathbf{r}) | l\mathbf{k} \rangle [F(\varepsilon_{l\mathbf{k}}) - F(\varepsilon_{l'\mathbf{k} + \mathbf{q}})]}{\hbar \omega + \varepsilon_{l\mathbf{k}} - \varepsilon_{l'\mathbf{k} + \mathbf{q}}}$$

DFT with local field corrections improves the agreement with data but does nothing for the L edge

The local field effects make a significant contribution to the absorption

Core electrons are important when local fields are included

If we ignore the local field corrections, the core electrons play no role below the L edge

Hedin's GW approximation

$$(T + V - \varepsilon_{lk})\psi_{lk}(\mathbf{r}) + \int d^3\mathbf{r}' \ \Sigma(\mathbf{r}, \mathbf{r}', \varepsilon_{lk})\psi_{lk}(\mathbf{r}') = 0$$

where the self energy operator Σ is given by

$$\Sigma(\mathbf{r},\mathbf{r}',\omega) = \frac{i}{4\pi} \int_{-\infty}^{\infty} e^{i\omega'\delta} G(\mathbf{r},\mathbf{r}',\omega+\omega') W(\mathbf{r},\mathbf{r}',\omega') d\omega'$$

and where *G* is the single particle Green's function and *W* is the dynamically screened Coulomb interaction.

This dramatically improves over DFT in the calculation of band gaps and band widths (much more expensive)

Lars Hedin

In the G_0W_0 approximation, DFT eigenvalues and eigenfunctions are used to construct G and W

Iterating on the eigenvalues and eigenfunctions in G converges to the measured L edge

We find good agreement with absorption data out to 300 eV

GW calculations with thermal configurations show enhanced lower energy absorption

Finally, some warm dense aluminum

Summary

- We have explored the utility of electronic structure methods in calculating absorptions beyond the plasma frequency.
- Even with good potentials, DFT without local field corrections is good to within about a factor of two, and edges can be several eV off.
- With LFC, DFT gets the absorption generally pretty well, but edges would need to be corrected.
- GW methods, with core electrons and local field corrections, do very well. Thermal configurations are important at lower energies.

